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Dear Editor,

Haplotypic information in diploid organisms provides 
valuable information on human evolutionary history and 
plays an important role in identifying a candidate gene in 
the etiology of complex genetic diseases. However, hap-
lotypes of diploid individuals cannot be acquired easily. 
Molecular haplotyping methods are very costly and have 
low throughput, and current genotyping and sequenc-
ing methods do not provide information on the linkage 
phase in diploid organisms. The application of statisti-
cal methods to infer the haplotype phase in samples of 
diploid sequences is a very cost-effective approach. Several 
computational and statistical methods have been developed 
for haplotype inference, including Clark’s algorithm [1], the 
Expectation Maximization (EM) algorithm [2], and Gibbs 
sampler [3]. Because of its interpretability and stability, 
the EM algorithm has become one of the most widely 
used statistical algorithms. However, the standard EM 
algorithm has several weaknesses, including the inability 
to handle a large number of markers and convergence to 
the local optimum. To overcome these problems, vari-
ous derivative methods have been developed, such as 
the Partition-Ligation EM (PLEM) algorithm to handle 
many more linked loci [4], the Optimal Step Length EM 
(OSLEM) algorithm to accelerate the calculations [5], 
and the Stochastic EM (SEM) algorithm to deal with 
missing genotypic data and to avoid convergence to local 
maxima [6]. However, most packages are intended for 
use with single-nucleotide polymorphism (SNP) data in a 
biallelic manner. 

More and more researchers are analyzing both multial-
lelic and biallelic markers in the linkage and/or associa-
tion studies of complex diseases. The analysis of linkage 
disequilibrium (LD) between multiallelic loci and hap-
lotype inference of many loci (including bi- and multi-
allelic markers) present a number of common problems. 
The major difficulty for the haplotype inference problem 
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is exploring the large number of haplotype pairs that are 
consistent with the observed genotypes. One solution 
is to limit the number of candidate haplotypes. Ideally, 
a condensed haplotype set would make the process of 
haplotype inference quick and accurate. Our approach 
is to construct the haplotype space gradually rather than 
beginning with the set of all possible haplotypes. 

SHEsis [7] (http://analysis.bio-x.cn) is a robust and 
user-friendly software platform for the analysis of link-
age disequilibrium, haplotype construction, and genetic 
association at polymorphism loci [7]. However, the hap-
lotype construction element is based on the standard EM 
algorithm (the so-called Full-Precise-Iteration algorithm 
referred to in a previous article), and it therefore comes 
with the deficiencies mentioned above. In this study, 
we have developed a new improved algorithm, the PL-
CSEM (Partition-Ligation Combination-Subdivision 
EM), designed for efficient estimation of haplotypes con-
structed from large numbers of biallelic or multiallelic 
loci in diploid individuals.

We applied the CS strategy, which deals with the 
number of alleles for each locus, to construct an opti-
mum set of candidate haplotypes. The essential steps of 
the CS strategy are as follows: we first combine some 
alleles to reduce the total for each multiallelic locus (the 
combination step), and then use the EM algorithm to 
construct haplotypes with the new alleles, i.e. from the 
combination step, and subdivide the phase hierarchically, 
through a bottom-up approach (the subdivision step). For 
instance, given a pair of multiallelic loci with k and l al-
leles, respectively, there are k×l possible haplotypes (Figure 
1). The standard EM algorithm has to consider all the 
possible haplotypes, but using the CS strategy, we first 
combine alleles to make both loci biallelic, and then use 
the EM algorithm to estimate haplotypes with the new 
alleles. In the EM step, only four possible haplotypes 
are taken into consideration. Then, only the haplotypes 
whose frequencies are greater than a threshold value (e.g. 
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10-5) are retained in the next step. In the subdivision step, 
every allele (except the initial allele) is subdivided into 
two parts, so the remaining haplotypes are broken up 
to form the set of candidate haplotypes for the next EM 
step. The subdivision and EM steps are repeated until all 
the alleles are returned to the initial state. In the program, 
the alleles are combined randomly in the combination 
step. To test whether the random combination is robust, 
we generated 10 simulated data sets (5 multiallelic loci 
of 500 individuals). For each data set, we estimated the 
haplotype frequencies 10 times (they can be combined in 
different ways), and calculated the performance indexes 
for comparison. The results show that despite the differ-
ent combination possibilities, the groups of significant 
haplotypes are very close, and only those haplotypes with 
very low frequencies are different. We believe, therefore, 
that the random method of combination is robust (for de-
tails, see Supplementary information, Table S1). 

Niu and Qin et al. first implemented the Partition-
Ligation (PL) strategy together with Gibbs sampling 
and the EM algorithm (i.e. PLEM) to estimate haplotype 
phases for a large number of SNPs [4, 8]. The PL strat-
egy is a divide-conquer-combine technique, and it is use-
ful in dealing with a large number of linked loci. We also 
implemented the PL strategy in our program. It can be 
described as follows: first break down all of the marker 
loci into stretches of “atomistic” units, construct haplo-
types for each unit and then rebuild the phase hierarchi-
cally, through a bottom-up approach. In each unit, hap-
lotypes are generated through the EM algorithm or the 
CSEM algorithm (for the ones that include multiallelic 
loci). In addition, we have devised another method for 
use in the ligation step. Since every unit can be consid-
ered as a multiallelic locus, the CS strategy could be use-
ful. If the set of candidate haplotypes space is too large, 
the CS strategy would be utilized in this step. More than 
two segments could be combined at each ligation step.

To avoid eliminating haplotypes too readily, in each 
EM/CSEM step the threshold value for eliminating 
haplotypes is adaptable. However, a backup-buffering 
strategy is also available. The user can set the threshold 
value and the size of a buffer for retaining some partial 
haplotypes whose estimated frequencies are below the 
threshold value. Thus, appropriate values can be set to 
retain more independent haplotypes. 

To illustrate the use of our algorithm in practice, we 
analyzed real data sets of HLA (5 multiallelic loci (15, 
32, 14, 13 and 7, respectively) of 420 unrelated individu-
als) and GH1 (14 biallelic loci and 1 triallelic locus of 
154 unrelated individuals). We also derived real SNP 
data sets (100 replicates of 20 and 40 SNPs of 60 in-
dividuals) from the International HapMap Project and 

generated simulated data sets (100 replicates of 20 and 
40 SNPs of 60 individuals, and 20, 40, 80, and 160 SNPs 
of 500 and 1000 individuals) using a coalescence model 
[9]. We evaluated the performance of our method, com-
pared with PLEM. The PLEM program was downloaded 
from J. S. Liu’s web site. The parameters of the program 
were set up as recommended. We computed the IH and IF 

scores previously used by Excoffier and Slatkin [2], and 
the average error rates based on either individual phase 
call (INDI) or the proportion of incorrectly inferred loci 
(LOCI) [4]. IH is an index of performance in terms of 
haplotype identification, and its value can vary between 1, 
when the identified haplotypes are exactly those present 
in the true sample, and 0, when none of the true haplo-
types has been identified. IF is defined as one minus half 
the sum of absolute differences between estimated and 
true haplotype frequencies, and it varies from 0 to 1. The 
more accurate the estimation, the closer to 1 the IF value. 
In addition, we recorded the running time (RT), using 
Inter (R) Xeon(TM) CPU 2.80 GHz, 2.79 GHz, and 2.00 
GB RAM on the Microsoft Windows XP operating sys-
tem with 1 s as the time unit. 

Tables 1 and 2 show the performance of our program 
and PLEM for the real data sets and the simulated data 
sets, with the better performance shown in bold. Because 
the real phase information of the HLA data were un-
known, we could not calculate its IH, IF, and error rates. 
The results of GH1 and HLA for the PLEM program 
were also unavailable, as the PLEM program cannot 
handle multiallelic loci. For most of the comparisons, 
the PL-CSEM program performs better than the PLEM 
program, obtaining higher IH and IF scores, with lower 
error rates in terms of both the individual phase calls and 
the incorrectly inferred loci, as well as requiring less run-
ning time. 

In summary, the most important improvement in our 
program, relative to PLEM, is that for large data sets, our 
system is much less time-consuming and has a lower, or 
at least comparable, error rate. In addition, our program 
can deal with loci with dozens of alleles, which is be-
yond the scope of the PLEM program. The PL-CSEM 
program, which is integrated into the SHEsis [7], an 
existing web-based platform, is freely available through 
the internet (http://analysis.bio-x.cn). (A test version is 
currently available.〈http://analysis.bio-x.cn/myAnalysis0.
php〉) However, reference 7 and this paper should be 
cited whenever it is used in publication. 
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Figure 1 A flow chart of the CS-EM algorithm. A and B are two multiallelic loci with k and l alleles, respectively. x is the level 
of the CS pyramidal hierarchy; Ax and Bx denote the temporary alleles, which are made up of the initial alleles. To prove the 
random combination is robust, we generated 10 simulated data sets (5 multiallelic loci of 500 individuals). For each data set, 
we estimated the haplotype frequencies 10 times (there are different combination possibilities), and calculated the IH and IF 

scores for comparison. The results show that although there are different possible combinations, the groups of significant 
haplotypes are very close, and only those haplotypes with very low frequencies are different. We therefore consider that the 
random method of combination is robust.

A                                                   BLocus:

Alleles: Ai(i=1,2,…, k) Bj(j=1,2,…, l)

Ai(i=1,2,…, s)       01,

  Ai(i=s+1,…, k)       A02

Bj(j=1,2,…, t)       B01,

  Bj(j=t+1,…, l)       B02

A01B01                                A02B01                                A02B02                               A01B02 

A11B11

A11B12

A12B11

A12B12

A13B11

A13B12

A14B11

A14B12

A13B13

A13B14

A14B13

A14B14

discarded

(freq < ε)

else(discarded)

A01       A11, A12;

A02            A13, A14;

B01           B11, B12;

B02            B13, B14;

Haplotypes_0:

A11B11                A11B12                                                 A14B12               A14B14Haplotypes_1:

Haplotypes_x: Ax1Bx1                                          Ax1Bxn                                             AxmBx1                                                    AxmBxn 

Ax1            A(x+1)1, A(x+1)2; …;

Axm           A(x+1)2m-1, A(x+1)2m;

Bx1            B(x+1)1, B(x+1)2; …;

Bxn            B(x+1)2n-1, B(x+1)2n;

A(x+1)1 B(x+1)1

A(x+1)1 B(x+1)2

A(x+1)2 B(x+1)1

A(x+1)2 B(x+1)2

A(x+1)1 B(x+1)2n-1

A(x+1)1 B(x+1)2n

A(x+1)2 B(x+1)2n-1

A(x+1)2 B(x+1)2n

A(x+1)2m-1 B(x+1)1

A(x+1)2m-1 B(x+1)2

A(x+1)2m B(x+1)1

A(x+1)2m B(x+1)2

A(x+1)2m-1 B(x+1)2n-1

A(x+1)2m-1 B(x+1)2n

A(x+1)2m B(x+1)2n-1

A(x+1)2m B(x+1)2n

Haplotypes:

Haplotypes_(x+1):      A(x+1)1 B(x+1)1                           A(x+1)2 B(x+1)2n-1                            A(x+1)2m-1 B(x+1)2n              else(discarded)

A1B1                      A1Bm                    AnB1                     AnBm

Subdivision & EM step:

EM step:

Subdivision & EM steps:

EM step:

Subdivision step:

EM step:

Combination step:

Subdivision step:



 Cell Research | Vol 19 No 4 | April 2009

PL-CSEM for haplotype inference (update of SHEsis)
522

npg

hai Changning Health Bureau Program (2008406002), Shanghai 
Municipal Health Bureau Program (2008095), Shanghai Program 
(07DZ22917), Shanghai Leading Academic Discipline Project 
(B205), National S973 Program (2007CB947303), National Basic 
Research Program of China (2006CB910601), Shanghai-Unilever 
Research and Development Fund (06SU07007), and National Key 
Technology R&D Program (2006BAI05A05). We are grateful to 
Amy De’ath of the Welsh Transplantation and Immunogenetics 
Laboratory for providing the Sinhala Data, and Horan et al. of the 
Institute of Medical Genetics, Cardiff University, for providing the 
GH1 data set.

Zhiqiang Li1, 2, 3,*, Zhao Zhang2, 3,*, Zangdong He1, 2, 3, 
Wei Tang2, 3, Tao Li1, 2, 3, Zhen Zeng1, 2, 3, Lin He2, 3, 4, 
Yongyong Shi1, 2, 3

1Changning Mental Health Center, Affiliated Hospital of Bio-X 
Center, Shanghai Jiao Tong University, 299 Xiehe Road, 
Shanghai 200042, China; 2Bio-X Center, Shanghai Jiao Tong 
University, 1954 Huashan Road, Shanghai 200030, China; 3In-
stitute for Nutritional Sciences, Shanghai Institutes for Biologi-
cal Sciences, Chinese Academy of Sciences, 294 Taiyuan Road, 
Shanghai 200031, China; 4Institutes of Biomedical Sciences, 
Fudan University, Shanghai 200032, China

*These two authors contributed equally to this work.
Correspondence: Yongyong Shia, Lin Heb

Tel: +86-21-6293-3338; Fax: +86-21-3226-0640
E-mail: ashiyongyong@gmail.com; bhelinhelin@gmail.com

References

1 	 Clark AG. Inference of haplotypes from PCR-amplified sam-
ples of diploid populations. Mol Biol Evol 1990; 7:111-122.

2 	 Excoffier L, Slatkin M. Maximum-likelihood estimation of 
molecular haplotype frequencies in a diploid population. Mol 
Biol Evol 1995; 12:921-927.

3 	 Stephens M, Smith NJ, Donnelly P. A new statistical method 
for haplotype reconstruction from population data. Am J Hum 
Genet 2001; 68:978-989.

4 	 Qin ZS, Niu T, Liu JS. Partition-ligation-expectation-maximi-
zation algorithm for haplotype inference with single-nucleotide 
polymorphisms. Am J Hum Genet 2002; 71:1242-1247.

5 	 Zhang P, Sheng H, Morabia A, Gilliam TC. Optimal step 
length EM algorithm (OSLEM) for the estimation of haplotype 
frequency and its application in lipoprotein lipase genotyping. 
BMC Bioinformatics 2003; 4:3.

6 	 Tregouet DA, Escolano S, Tiret L, Mallet A, Golmard JL. A 
new algorithm for haplotype-based association analysis: the 
Stochastic-EM algorithm. Ann Hum Genet 2004; 68:165-177.

Table 2 Performance of programs for the simulated data sets
              Sample Num	             60		                                 500		                                                1000
                Loci Num	    20	    40	    20	   40	   80	  160	   20	   40	   80	  160
IH	 OUR	 0.806	 0.710	 0.931	 0.915	 0.905	 0.895	 0.976	 0.972	 0.977	 0.979
	 PLEM	 0.752	 0.665	 0.911	 0.877	 0.827	 0.761	 0.964	 0.941	 0.913	 0.880
IF	 OUR	 0.899	 0.812	 0.986	 0.980	 0.972	 0.955	 0.993	 0.990	 0.990	 0.987
	 PLEM	 0.864	 0.747	 0.983	 0.966	 0.951	 0.932	 0.991	 0.984	 0.975	 0.965
INDI	 OUR	 8.05	 18.15	 0.80	 1.57	 2.73	 5.97	 0.49	 0.81	 1.47	 2.75
	 PLEM	 11.28	 24.25	 1.08	 2.61	 3.70	 4.13	 0.60	 1.29	 1.97	 2.05
LOCI	 OUR	 0.63	 1.03	 0.06	 0.09	 0.11	 0.16	 0.03	 0.04	 0.06	 0.08
	 PLEM	 0.92	 1.51	 0.08	 0.15	 0.17	 0.15	 0.04	 0.07	 0.09	 0.07
RT 	 OUR	 0.10	 0.45	 0.37	 3.04	 19.1	 133.8	 0.49	 4.9	 46.3	 304.9
(s) 	 PLEM	 0.13	 0.33	 0.51	 6.31	 41.8	 117.9	 0.94	 19.2	 850.9	 2518.0
The better performance is shown in bold.

Table 1 Performance of programs for the real data sets
	 OUR \ PLEM	 HLA	 GH1	                                                       Chr12-HapMap_CEU
		  5 Loci	 15 Loci	 20 SNPs	 40 SNPs
	 IH	 – \ –	   0.784 \ –	     0.877 \ 0.867	    0.770 \ 0.764
	 IF	 – \ –	   0.927 \ –	     0.954 \ 0.948	    0.887 \ 0.867
	 INDI	 – \ –	 9.09 \ –	 4.00 \ 4.55	    11.32 \ 13.23
	 LOCI	 – \ –	 0.82 \ –	 0.36 \ 0.39	 0.75 \ 0.81
	 RT (s)	       104.2 \ –	 0.13 \ –	 0.05 \ 0.11	 0.20 \ 0.23
The unavailable value is shown in ‘–’. The better performance is shown in bold.



www.cell-research.com | Cell Research

Zhiqiang Li et al.
523

npg

7 	 Shi YY, He L. SHEsis, a powerful software platform for analy-
ses of linkage disequilibrium, haplotype construction, and ge-
netic association at polymorphism loci. Cell Res 2005; 15:97-
98.

8 	 Niu T, Qin ZS, Xu X, Liu JS. Bayesian haplotype inference for 

multiple linked single-nucleotide polymorphisms. Am J Hum 
Genet 2002; 70:157-169.

9 	 Hudson RR. Generating samples under a Wright-Fisher neutral 
model of genetic variation. Bioinformatics 2002; 18:337-338.

(Supplementary information is linked to the online version of 
the paper on the Cell Research website.)


